China Standard Industrial Gearbox Double Enveloping Worm Reduction Gearbox gearbox definition

Product Description

Industrial Gearbox Double Enveloping Worm Reduction Gearbox 

Series C  double enveloping worm gear
Model: 100 – 500
Ratio: 10 -63
Output Torque : 683 – 51180 N.m
Rating Power : 47/25HP(1.41Kw) – 597HP(448Kw)

Description :
1, High torque double enveloping worm gear adjust toughest working condition .
2,Universal design double enveloping worm gearbox.
3, Smooth and noiseless operation double worm gearbox.
4, Higher driving efficiency than traditional worm gear.
5, Increasing loading capacity .
6, Strict quality test before shipping
7, Customized design for various application
8, Long life service period
9,suitable price with moderated
10, moderate price & high quality

As 1 of  famous double enveloping worm gear manufacturers,SGR’s double throated worm gear has advantage of High efficiency, low noise, smooth operation , it increase output torque that mean increasing loading capacity , improved gear accuracy, and extended Long life service period . in SGR double enveloping worm gear design ,based on different ratio, it has Multi-tooth meshed, allowed bigger CHINAMFG load . with the increase of  number of driven gear teeth , that mean in contact with the worm significantly increases output  torque force. except increasing the number of driven gear teeth in contact with the worm,  double enveloping worm gear also increase the contact surface on every gear tooth. The actual gear surface of instantaneous contact between the double throated  and the driven gear tooth are in-lines. These lines of contact move across the face of the gear tooth as it progresses through its total time of mesh with the worm. The lines of contact in double enveloping worm gear are configured to increase the  force and decrease the stress on every gear tooth.

Datasheet on CUW double enveloping worm gear reducer :

Model ShaftDia. (mm) Center Height (CUW) (CUW) Output shaft Dia. Power Ratio Permitted Torque Weight
(CUW) input Solid(h6) (mm) (mm) (kw) (Nm) (KGS)
100 28 190 48 1.41~11.5 10 .25~ 62 683-1094 42
125 32 225 55 2.42~19.7 10 .25 ~ 62 1170~2221 65
140 38 255 65 3.94~25.9 10 .25 ~ 62 1555 ~ 3473 85
160 42 290 70 4.39~35.7 10 .25 ~ 62 2143 ~4212 120
180 48 320 80 5.83~47.5 10 .25 ~ 62 2812 ~ 5387 170
200 55 350 90 7.52 ~61.2 10 .25 ~ 62 3624 ~6859 220
225 60 390 100 9.9~81.4 10 .25 ~ 62 4872 ~ 9224 290
250 65 430 110 12.9 ~105 10 .25~ 62 6284~11892 380
280 70 480 120 16.9 ~ 138 10 .25 ~ 62 8347 ~ 15820 520
315 75 530 140 22.5 ~183 10 .25 ~ 62 11068~ 19450 700
355 80 595 150 30~245 10 .25 ~ 62 14818 ~28014  1030
400 90 660 170 32.1 ~261 10 .25 ~ 62 15786~29918 1400
450 100 740 190 42.6 ~347 10 .25 ~ 62 2571~39881 1980
500 110 815 210 54.9 ~ 448 10 .25 ~ 62 27097~51180 2700

 

    /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    Application: Motor, Machinery
    Hardness: Hardened Tooth Surface
    Installation: Horizontal Type
    Layout: Coaxial
    Gear Shape: Bevel Gear
    Step: Single-Step
    Samples:
    US$ 2000/Piece
    1 Piece(Min.Order)

    |
    Request Sample

    Customization:
    Available

    |

    Customized Request

    worm gearbox

    Can a Worm Gearbox be Used for High-Speed Applications?

    Worm gearboxes are generally not recommended for high-speed applications due to their inherent design characteristics. Here’s why:

    • Efficiency: Worm gearboxes tend to have lower efficiency compared to other gearbox types, which means they can generate more heat and experience more energy loss at high speeds.
    • Heat Generation: The sliding contact between the worm and worm wheel in a worm gearbox can lead to significant friction and heat generation, especially at high speeds. This heat can cause thermal expansion, affecting the gearbox’s performance and longevity.
    • Wear and Noise: High speeds can exacerbate wear and noise issues in worm gearboxes. Increased friction and wear can lead to faster degradation of components, resulting in reduced lifespan and increased maintenance needs.
    • Backlash: Worm gearboxes may have higher backlash compared to other gearbox types, which can impact precision and accuracy in high-speed applications.

    While worm gearboxes are more commonly used in applications requiring high torque and moderate speeds, they may not be the best choice for high-speed scenarios. If high-speed operation is a requirement, other gearbox types such as helical, spur, or planetary gearboxes are often better suited due to their higher efficiency, lower heat generation, and reduced wear at elevated speeds.

    worm gearbox

    How to Calculate the Input and Output Speeds of a Worm Gearbox?

    Calculating the input and output speeds of a worm gearbox involves understanding the gear ratio and the principles of gear reduction. Here’s how you can calculate these speeds:

    • Input Speed: The input speed (N1) is the speed of the driving gear, which is the worm gear in this case. It is usually provided by the manufacturer or can be measured directly.
    • Output Speed: The output speed (N2) is the speed of the driven gear, which is the worm wheel. To calculate the output speed, use the formula:

      N2 = N1 / (Z1 * i)

    Where:
    N2 = Output speed (rpm)
    N1 = Input speed (rpm)
    Z1 = Number of teeth on the worm gear
    i = Gear ratio (ratio of the number of teeth on the worm gear to the number of threads on the worm)

    It’s important to note that worm gearboxes are designed for gear reduction, which means that the output speed is lower than the input speed. Additionally, the efficiency of the gearbox, friction, and other factors can affect the actual output speed. Calculating the input and output speeds is crucial for understanding the performance and capabilities of the worm gearbox in a specific application.

    worm gearbox

    Can a Worm Gearbox Provide High Torque Output?

    Yes, a worm gearbox is capable of providing high torque output due to its unique design and principle of operation. Worm gears are known for their high torque multiplication capabilities, making them suitable for applications that require significant torque transfer.

    The torque output of a worm gearbox is influenced by several factors:

    • Lead Angle: The lead angle of the worm affects the mechanical advantage of the gear system. A larger lead angle can result in higher torque output.
    • Worm Diameter: A larger diameter worm can offer increased torque output as it provides more contact area with the gear.
    • Gear Ratio: The gear ratio between the worm and the gear determines the torque multiplication factor. A higher gear ratio leads to higher torque output.
    • Lubrication: Proper lubrication is essential to minimize friction and ensure efficient torque transmission.
    • Material and Quality: High-quality materials and precision manufacturing contribute to the gearbox’s ability to handle high torque loads.

    Due to their ability to provide high torque output in a compact form factor, worm gearboxes are commonly used in various industrial applications, including heavy machinery, construction equipment, conveyor systems, and more.

    China Standard Industrial Gearbox Double Enveloping Worm Reduction Gearbox   gearbox definition		China Standard Industrial Gearbox Double Enveloping Worm Reduction Gearbox   gearbox definition
    editor by CX 2024-03-04

    Comments

    Leave a Reply

    Your email address will not be published. Required fields are marked *